Èíôîðìàòèêà


         

Ïîñëåäíèé óñëîâíûé îïåðàòîð èçìåíÿåò âåðõíþþ


êöèêë                                                                        next k
åñëè k< Nmo N := k-1                                              if k < N then N = k-1
êîí                                                                              return
Ïîñëåäíèé óñëîâíûé îïåðàòîð èçìåíÿåò âåðõíþþ ãðàíèöó N ìàññèâîâ â òîì ñëó÷àå, åñëè ôàêòè÷åñêîå ÷èñëî äàííûõ ìåíüøå ÷èñëà ìåñò â ìàññèâàõ, ðàçìåùåííûõ â ïàìÿòè êîìïüþòåðà.
àëã «äàííûå îñòàòêîâ»                                          ostatok: 'äàííûå îñòàòêîâ
íà÷                                                                              '
çàãðóçêà-îñòàòêîâ                                                 restore osts
îò k = 1 äî N öèêë                                                  for k = 1 to N
÷meíue(tv(k),c(k),p(k))                                           read tv$(k),c(k),p(k)
ïðè tv(k) = «» âûõîä                                                if tv$(k) = «» then exit for
âûâîä (tv(k),c(k),p(k))                                             ? tv$(k);c(k);p(k)
êöèêë                                                                        next k
åñëè k < N mo N := k-1                                            if k < N then N = k-1
êîí                                                                              return
Ïîäñ÷åò âûðó÷êè â ñîîòâåòñòâèè ñ ïîñòàíîâêîé çàäà÷è ïî äàííûì, ââåäåííûì â ýòè ìàññèâû, âûïîëíÿò ñëåäóþùèå âñïîìîãàòåëüíûé àëãîðèòì è ïîäïðîãðàììà:
àëã «ïîäñ÷åò âûðó÷êè»                                           vyruch: 'ïîäñ÷åò âûðó÷êè
íà÷                                                                              '
S := 0                                                                         S = 0
îò k = 1 äî N öèêë                                                  for k = 1 to N
S := S+(c(k)-s(k)) *(m(k)-p(k))                                S = S+(c(k)-s(k))*(m(k)-p(k))
êöèêë                                                                        next k

Ñîäåðæàíèå  Íàçàä  Âïåðåä