Схема проводит ток, когда хотя
Схема проводит ток, когда хотя бы один из переключателей замкнут, следовательно,
F(x)=x v y;
ж)
Схема состоит из двух параллельных ветвей и описывается функцией
.
Две схемы называются равносильными, если через одну из них проходит ток тогда и только тогда, когда он проходит через другую (при одном и том же входном сигнале).
Из двух равносильных схем более простой считается та схема, функция проводимости которой содержит меньшее число логических операций или переключателей.
|
Задача нахождения среди равносильных схем наиболее простых является очень важной. Большой вклад в ее решение внесли российские учёные
Ю.И. Журавлев, С.В. Яблонский и др.
При рассмотрении переключательных схем возникают две основные задачи:
синтез и анализ схемы.
СИНТЕЗ СХЕМЫ по заданным условиям ее работы сводится к следующим трём этапам:
составлению функции проводимости по таблице истинности, отражающей эти условия;
упрощению этой функции;
построению соответствующей схемы.
АНАЛИЗ СХЕМЫ сводится к
определению значений её функции проводимости при всех возможных наборах входящих в эту функцию переменных.
получению упрощённой формулы.
Примеры.
1. Построим схему, содержащую 4 переключателя x, y, z и t, такую, чтобы она проводила ток тогда и только тогда, когда замкнут контакт переключателя t и какой-нибудь из остальных трёх контактов.
Решение. В этом случае можно обойтись без построения таблицы истинности. Очевидно, что функция проводимости имеет вид
F(x, y, z, t) = t . (x v y v z), а схема выглядит так:
2. Построим схему с пятью переключателями, которая проводит ток в том и только в том случае, когда замкнуты ровно четыре из этих переключателей.
Схема имеет вид:
3. Найдем функцию проводимости схемы:
Решение. Имеется четыре возможных пути прохождения тока при замкнутых переключателях a, b, c, d, e : через переключатели a, b; через переключатели a, e, d; через переключатели c, d и через переключатели c, e, b. Функция проводимости
F(a, b, c, d, e) = a .
Содержание Назад Вперед